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Abstract: In this article, we have investigated some algebraic structures of graphs
and propose some non-conventional graph algorithms for dealing with network-like
systems. The algebraic graph operation, namely graph join is used to find the
optimal virtual networks and the shortest path with a sequence of vertices con-
necting source (say, least) and destination (say, greatest) vertices. We also rep-
resent graphs algebraically and propose related algorithm to simplify complicated
network/decision problems using semiring axioms.
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1. Introduction and Preliminaries

Graph theory has been a favorite platform for mathematicians and computer
scientists for describing and analyzing the networks in a more abstract and gen-
eral way. Some of the popularly known algorithms like the Dijkstra algorithm,
Travelling Salesman Problem (TSP) are presented in the context of studying net-
work analysis and routing problems [6]. A connection between interprocedural
dataflow analysis and model checking of pushdown systems (PDSs) has been ex-
plored using semiring, and its related algebraic notions [14]. Working with graph
operations is of great interest to a large scientific community. For instance, Azari
et al. [2] present expressions for the eccentric connectivity coindex of several graph
operations; Basavanagoud et al. [3] discuss the computation of the Hyper-Zagreb
coindex of certain graph operations. Likewise, Gao et al. [7] present some exact
expressions for the Hyper-Zagreb index of graph operations containing Cartesian
product and join of n graphs, etc., and their consequent applications to chemical
structures. The graph’s disjoint union and the join operations are also used in
investigating the neighborhood polynomial of the graphs [1]. In this article, we use
three graph operations, namely graph union ∪∪∪1, join ∇, and operation ∇∇∇ (which
we call pseudo-graph join). We note that in [13], the structure (S,∪∪∪,∇, (∅, ∅)) is a
semiring, where S is the set of all simple undirected graphs and (∅, ∅) is an empty
graph. This semiring is an example of a non-monosemiring in which the neutral
element concerning addition and multiplication coincides. The empty graph (∅, ∅)
is the neutral element concerning both operations. This semiring can be closely
associated with max-plus semiring [8]. Many authors have studied various prop-
erties and usage of graph operations in algebraic settings. For instance, Mokhov
[10] calls overlay + and connect→ to mean the graph union and join, respectively,
which deals with directed graphs that satisfy various algebraic properties and are
subsequently applied to working with graphs in Haskell. An approach to graph
theory in an algebraic setting has also been found attempted by Bustamante [5],
where the graph operation called the linking between two graphs G and G′, which
is akin to what we call join ∇ in this paper, and an algebraic structure called
“Link Algebra” is analogous to the semiring (S,∪∪∪,∇, (∅, ∅)). The study of graphs
in algebraic settings has also been investigated by Umbrey and Rahman since 2020
[12, 16, 18]. Liang [9] formalizes dynamic programming algorithms using semiring
and hypergraph frameworks, particularly the Viterbi-style fixed-order algorithms
and the Dijkstra-style best-first algorithms.

1The operations ∪ is set union and the operations ∪∪∪ is graph union.
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Definition 1.1. A semiring is an algebraic structure (S,⊕,⊗, 0̄, 1̄) equipped with
addition ⊕ and multiplication ⊗, where ⊗ distributes over ⊕, and (S,⊕, 0̄) and
(S,⊗) are monoid and semigroup, respectively. Further, (S,⊗, 1̄) is monoid if 1̄
exists. In general, 0 is multiplicatively absorbing element.

Definition 1.2. The term graph refers to a set of objects (called vertices or nodes)
that are connected together. The connections between the vertices are called edges.
A graph is said to be directed if the edges are directed by arrows, indicating that the
relationship represented by the edge only applies from one vertex to the other, but
not the other way around. On other hand, a graph whose edges are not directed is
called an undirected graph. The graph G is denoted by (V,E), where V is the set
of vertices and E is the set of edges.

Definition 1.3. The union of the graphs G1 = (V1, E1) and G2 = (V2, E2) is
defined as the graph G1 ∪∪∪G2 = (V1 ∪ V2, E1 ∪ E2).

Definition 1.4. The join of two graphs G and H is a graph formed by con-
necting each vertex of G to each vertex of H, which we define and denote as
G∇H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {(u, v) : u ∈ V (G), v ∈ V (H)} \ {(a, a) :
a ∈ V (G) ∩ V (H)}).
Definition 1.5. We call a graph to be an optimal graph if it represents the best
possible decision of a problem.

Definition 1.6. The notation ∇∇∇ is a pseudo-graph join operation such that with
two graphs G and H, we define, G∇∇∇H = (V (G) ∪ V (H), E(G) ∪ E(H) ∪ {(u, v) :
u ∈ V (G), v ∈ V (H); u /∈ V (H), v /∈ V (G)}).

An intuitive notion of this definition is that when we join two network systems,
an individual network representing its original relations (or links) will be unaltered
by adding a new relation between the two networks. Precisely, adding a new
relation across two networks is possible only if there exists at least an uncommon
node as such the uncommon nodes are linked by virtue of the definition of ∇∇∇.

2. Main Results

Property 2.1. Let G1 and G2 have m and n vertices, respectively. Then the
number of edges in G1∇∇∇G2 is given by

|E(G1∇∇∇G2)| =

{
|E(G1)|+ |E(G2)|+ (m− k)× (n− k), if V (G1) ∩ V (G2) ̸= ∅;
|E(G1)|+ |E(G2)|+m× n, if V (G1) ∩ V (G2) = ∅,

where k is the number of common vertices in G1 and G2.
The following example illustrates its functional values in some realistic sense.

Example 2.1. Let the graphs G1 and G2 contain m and n vertices, respectively
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having k common vertices. Let G1 and G2 represent two different networks of
people, where people are denoted by vertices, and each edge represents a handshake.
What is the maximum possible number of handshakes among the people of two
networks combined?

The number of handshakes in the network will be maximum if the graph rep-
resenting the network is a complete graph. Thus, the maximum number of hand-
shakes in the network G1 and G2 are m(m−1)

2
and n(n−1)

2
, respectively. Conse-

quently, the maximum number of handshakes in G1 and G2 combined must be
m(m−1)

2
+ n(n−1)

2
+ (m− k)× (n− 1).

Theorem 2.1. If SG is the set of all subgraphs of a graph G, then (SG,∪∪∪,∇) is a
semiring if and only if G is a complete graph.
Proof. Let us consider that (SG,∪∪∪,∇) is a semiring. Then the operation ∇ must
be closed in SG, which implies that for any two graphs G1, G2 ∈ SG, we have
G1∇G2 ∈ SG i.e., G1∇G2 ⊆⊆⊆ G. This is true only if E(G1) ∪ E(G2) ∪ {(u, v) :
u ∈ V (G1), v ∈ V (G2)} \ {(a, a) : a ∈ V (G1) ∩ V (G2)} ⊆ E(G) or, {(u, v) :
u ∈ V (G1), v ∈ V (G2)} \ {(a, a) : a ∈ V (G1) ∩ V (G2)} ⊆ E(G). Equivalently,
V (G1)× V (G2) ⊆ E(G) (ignoring the self loops). Since G1 and G2 are arbitrarily
taken and so are V (G1) and V (G2), hence we can conclude that for every pair of
vertices vi, vj ∈ V (G), the edge (vi, vj) belongs to E(G), which is true only if G is
a complete graph.

The proof of the converse part is easy, hence omitted.

Remark 2.1. In the above theorem, the graph G is absorbing element for both the
operations of SG.

Corollary 2.1. If (SG,∇) is magma and G is absorbing element in SG, then
(SG,∪∪∪,∇) is a semiring.
Proof. Since G is absorbing element, Gi∇G = G = G∇Gi ∀ Gi ∈ SG. This implies
that E(Gi)∪E(G)∪{(u, v) : u ∈ V (Gi), v ∈ V (G)}\{(a, a) : a ∈ V (Gi)∩V (G)} ⊆
E(G) or, {(u, v) : u ∈ V (Gi), v ∈ V (G)} \ {(a, a) : a ∈ V (Gi) ∩ V (G)} ⊆ E(G).
Equivalently, V (Gi)×V (G) ⊆ E(G) (ignoring the self loops). Since Gi is arbitrarily
taken and so is V (Gi), hence we can conclude that every vertex of G is connected
to every other vertex of itself. That is, G is a complete graph, hence by Theorem
2.1, (SG,∪∪∪,∇) is a semiring.

Proposition 2.1. Let S be the set of all simple undirected graphs. For all G1, G2 ∈
S, G1 ⊆⊆⊆ G2 if and only if there exists G ∈ S such that G1 = G2 ∪∪∪G.
Proof. Let G1 ⊆⊆⊆ G2 or, (V1, E1) ⊆⊆⊆ (V2, E2), which implies that V1 ⊆ V2 and
E1 ⊆ E2. Without loss of generality, we can write V1 = V2∪∪∪ V for some vertex set
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V and E1 = E2∪∪∪E for some edge set E. Consequently, (V1, E1) = (V2∪V,E2∪E) =
(V2, E2)∪∪∪ (V,E) i.e., G1 = G2 ∪∪∪G. The converse part is obvious, hence omitted.

In view of the Proposition 2.1, the semiring (S,∪∪∪,∇, (∅, ∅)) can be closely asso-
ciated with path algebra [4], which is an important tool for graph (path) algorithms,
especially when it comes to computer science.

In the sequel, we will introduce some graph algorithms in algebraic settings
which can be used in non-conventional decision-making problems. For a given set
of vertices of a graph, the best possible graph we can have to have the optimal
path between the given source and destination vertices seems to be a complicated
problem. For instance, with a given set of vertices, viz., V = {2, 6, 7, 4, 10}, what
could be the best possible graph containing the optimal path between 2 and 10?
Such open-ended questions may sound no practical sense, but they can also be
great questions under specific contexts. The following approach is an attempt to
address such problems.

3. Algorithms and Examples
Rahman [11] in 2016 have shown that any two elements belonging to the same

sets equipped with a relation exhibit a certain degree of relationship between them
in a practical sense even if their relationship is not visible crisply or discretely. He
has introduced this notion by defining membership and non-membership functions
to determine the degrees of divisibility and non-divisibility for each natural number
of a set of all-natural numbers less than or equal to 20. For example, the number 8
is neither a factor of 12 nor coprime. So, they have some common factors implying a
certain degree of divisibility. Hence 8 and 12 are related by weak divisibility. These
motivate us to extend such an idea to the graph theory, where a graph represents a
vague decision problem. In this context, we will consider that any pair of vertices of
a connected graphG (where edges represent a relationship between the vertices) can
always be connected by a direct edge. Suppose the vertices v1 and v2 are adjacent
in G. In that case, the edge (v1, v2) represents a strong relation. At the same time,
if v1 and v2 are non-adjacent but connected by a path, then these vertices will be
connected by a dotted edge showing a certain degree of relationship between the
two vertices. All these can be done with the help of algebraic graph/vertex join
operations.

The join of two vertices v1 and v2 of a graph G is an edge (v1, v2) denoted by
v1∇v2. The join of the vertices v1, v2, ..., vn is denoted by v1∇v2∇...∇vn.

In this section, we will discuss some non-conventional algorithms based on alge-
braic join operations ∇. Let the labels of vertices are from an ordered idempotent
semiring (R,⊕,⊗,≤R) such that for every u and v being vertices of the graphs in
S implies that u ⊕ v ∈ R and u ⊗ v ∈ R, such graphs are called semiring-valued
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graphs [14]. Choosing the algebraic expressions as either u ⊕ v ∈ R or u ⊗ v ∈ R
according to the context of applications, we propose the following Algorithms.

Algorithm 3.1. Let s and t be the source and the destination vertices of a semir-
ing valued graph G, where s is the least element, and t is the greatest element. All
the vertices of G are from an ordered idempotent semiring R.

1. Starting from s, we first visit the least vertex v1 (say), which is adjacent to
s. Mark the edge (s, v1) by red color, showing that it is traversed.

2. Starting from v1, we first visit the least unvisited vertex v2 (say). If v1 and
v2 are adjacent in G, then mark the edge (v1, v2) by red color. If v1 and v2
are non-adjacent in G, then join them by a dotted line.

3. Taking v2 as the starting point, we will repeat the process in Step 2. This
process continues up till all the vertices which are adjacent to the vertex t
are visited.

4. Join vi and t with the red color, where (vi, t) is an edge of G and vi < t such
that there exist no edge (u, t) in G such that vi < u < t.

5. Merge the vertices connected by dotted line using addition (max) operation
or multiplication (min) operations of R. Thus, we will get a reduced graph
with optimal path indicated by red color.

We will consider the weight of an edge of G as the max or min of end vertices
for the above algorithm.

If we use the multiplication (min) operation of R in Step 5 of the above al-
gorithm, then we will get the shortest path with minimum path weight. On the
other hand, if we use the addition (max) operation of R instead of the multipli-
cation (min) operation, we will get the shortest path with maximum path weight.
Sometimes, the maximum and the minimum path weights for the required shortest
paths may coincide. She shortest paths, as obtained in both cases, will be chains.
That is, the set of vertices s, v1, v2, ..., t on the the path connecting s and t will be
in the sequence s < v1 < v2 < ... < t.

We illustrate the following example with detailed steps.

Example 3.1. Let us consider the following graph G with the vertex set R =
{1, 2, 3, 4, 5, , 6, 7}, then (R,max,min,≤R) is an idempotent semiring. In the fol-
lowing graph, we let s = 1 and t = 7.
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Figure 1: G

Following the Steps 1 − 4 of the above algorithm, we have transformed the graph
G into the following graph G′.

1

3

4

6

5

2

77

Figure 2: G′

Detailed steps for obtaining Figure 2 from Figure 1:

1. The least vertex adjacent to source vertex 1 is 3, so visit 3 from 1 and mark
the edge (1, 3) as visited by coloring it red.

2. From 3, we will visit the smallest unvisited vertex. In this case, 2 is the
smallest vertex which unvisited, so visit 2 from 3 by drawing a dotted edge
between the vertices. Note that the dotted edge is used when the end vertices
are non-adjacent in G.

3. From 2, we visit 4, the smallest unvisited vertex, marking the edge (2, 4) red.

4. Similarly, from 4, we visit 5 using the dotted edge (4, 5).

5. Since the vertices 2 and 5 being the only adjacent to the destination vertex
7 have been visited, we stop the process by visiting 7 from 5, and mark the
edge (5, 7) red.

On applying the max operation in Step 5 of the above algorithm, we have the
following reduced graph with the shortest path having maximum weight denoted
by red color.
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Figure 3

Detailed steps for obtaining Figure 3 from Figure 2:

1. Merge the vertices connected by dotted edges. Due to the associativity of the
max operation, the sequence of merging vertices doesn’t alter the algorithm.
That is, in this case, any one of the pairs (2, 3) or (4, 5) can be merged first.
Here, pair (2, 3) is merged first to get the graph G1.

2. Since max{2, 3} = 3, the merged vertex is 3. Now, all the edges incident on
2 will also be incident on 3. For instance, the vertices 6 and 7 are adjacent
to 2; hence they will now be adjacent to 3 (note that 6 is already adjacent to
3 in G). Similarly, 4 is adjacent to 2 and the edge (2, 4) is marked red; hence
4 is adjacent to 3 and marked the edge (3, 4) red in G1. Note that if there
exist multiple edges between any two vertices vi and vj such that at least one
of them is red, then the edge (vi, vj) are marked red.

3. Similarly, the vertices 4 and 5 are merged. Thus, we get the required reduced
graph G2 in which the shortest path with maximum weight is denoted by red
color. Taking the edge weight as the minimum of end vertices, we get the
weight of the shortest path/chain as 1 + 3 + 5 = 9.

Similarly, on applying the min operation in Step 5 of the above algorithm, we
have the following reduced graph with the shortest path having minimum weight
denoted by red color.
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G1 G2

Figure 4

Again, taking the edge weight as the minimum of end vertices, the weight of the
required path/chain denoted by red color is 1+2+5 = 8. Note that by the shortest
path, we mean the path with the minimum number of edges.
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4. Algebraic Simplification of Complex Network Problems
Zykov [19] first talked about expressing a graph algebraically, calling it linear

complexes. We will express a complicated graph/network algebraically, where the
approach is different from previously discussed methods. Here, each vertex of
a graph will be considered as a graph again, called vertex graph, and study of
such networks have been initiated by Umbrey and Rahman in 2020 [17]. For the
sake of simplicity, we will consider a particular network problem G in which every
pair of vertex graphs is related under subgraph relation ⊆⊆⊆. For such networks,
we will denote vertex graphs of G by a sequence of numbers, implying that a
vertex graph labeled with a smaller number is a subgraph of the vertex graph
with a greater number. For example, if G1 and G2 are any two vertex graph of
G such that G1 ⊆⊆⊆ G2, then G1 and G2 can be replaced by a sequence of numbers,
namely 1 and 2, respectively. That means G1 ∪∪∪ G2 = G2, which is equivalent
to 1 ⊕ 2 = max{1, 2} = 2. Henceforth, we will use ⊕ instead of ∪∪∪ for the ease of
notation while simplifying an algebraic graph. We propose the following algorithm.

Algorithm 4.1. We will consider a problem network G of vertex graphs. That
is, each vertex of G is a graph again. Reduced the graph into a simpler form called
simplified network.

1. Express G =

m,n⊕
i,j

(vi∇vj), where vi and vj are vertex graphs of G.

2. Simplify the graph G algebraically to obtain its corresponding simplified net-
work.

Example 4.1. Consider the following network problem.

1

2

3

6

4 5

Figure 5: G

G = (1∇2)⊕ (1∇3)⊕ (1∇4)⊕ (2∇3)⊕ (2∇6)⊕ (3∇4)⊕ (4∇5)⊕ (4∇6)

= [1∇(2⊕ 3⊕ 4)]⊕ [2∇(3⊕ 6)]⊕ [4∇(3⊕ 5⊕ 6)]

= (1∇4)⊕ (2∇6)⊕ (4∇6)
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= [(1∇4)⊕ (4∇6)]⊕ [(2∇6)⊕ (4∇6)] (idempotency)

= 4∇(1⊕ 6)⊕ 6∇(2⊕ 4)

= (4∇6)⊕ (6∇4) = 4∇6, which is in simplified form.

This algorithm will be elegant in dealing with complicated networks because the
networks/graphs we represent here seem to be simple, but they are not as simple as
they appear because each vertex is again a graph. In the physical world, such types
of graphs are very realistic. Such graphs could be social networks (like Facebook),
computer networks, a complicated decision network problem, etc. Moreover, such
a simplified subgraph must represent the original graph. That is, all the properties
of the original graph will be reflected in the simplified subgraph. The chromatic
number, energy, etc., of the original and simplified graphs, should be identical. But
in the above examples, we know only a part of the original graphs; we don’t know
what the vertex graphs 1, 2,, etc. are, but we only know that they are all related
by the subgraph relation. We even don’t know how the edges of the original graphs
are defined. Once knowing what the given networks/graphs are, we can study all
their properties in terms its reduced simplified subgraphs.

Let us present a concrete example of this type of network.

Example 4.2. Let us consider V = {1, 2, 3, 4}; [1] = {0}; [2] = {0, 1}; [3] =
{0, 1, 2}; [4] = {0, 1, 2, 3} and [5] = {0, 1, 2, 3, 4} . On the set V , we define a set
E = {(a, b) : a divides b or b divides a ∀ a, b ∈ V ; a ̸= b}.
Now, we have the following graphs: G1 = ([1], ∅); G2 = ([2], {(0, 1)}); G3 =
([3], {(0, 1), (0, 2), (1, 2)}); G4 = ([4], {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)}) and G5 =
([5], {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 4)}).

Now, we consider the following network G with the set of vertex graphs V (G) =
{G1, G2, G3, G4, G5}.

G1

G2G4

G3 G5

Figure 6: G

The edge set of G is defined as
E(G) = {(Gi, Gj) : | V (Gi) | divides | V (Gj) | or | V (Gj) | divides | V (Gi) |; | V (Gi)
|≠| V (Gj) |}. Next, we have

G = (G1∇G2)⊕ (G1∇G3)⊕ (G1∇G4)⊕ (G1∇G5)⊕ (G2∇G4) (4.1)
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= (G2∇G4)⊕ (G1∇G5). (4.2)

Here, we can easily verify that the Expressions (4.1) and (4.2) of the right side of
the above equation give exactly the same graph, which is equal to G5.
5. Conclusion

This work is a new approach towards the fusion of graph and algebra to deal
with some real-time problems that are preferably non-conventional bit vaguer due
to various interdependent factors in a decision problem. It is very convenient to
represent a decision problem by a graph. The use of algebraic axioms in graphs (or,
set of graphs) will be a great potential to simplify and generalize complicated or
vague decision problems. The Algorithms have potential implementations in net-
working issues of social analysis, internet and computer, etc. Developing software
systems\programs for such graph algorithms will provide practical computational
tools to make it easier to study complicated graph-theoretic problems like commu-
nication network design, traffic optimization or network visualization, and other
decision-making problems. However, such development is a challenge for future
research.
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